Publications

List of publications

Preprints

  1. C. P. Royall, P. Charbonneau, M. Dijkstra, J. Russo, F. Smallenburg, T. Speck, and C. Valeriani, Colloidal Hard Spheres: Triumphs, Challenges and Mysteries. https://doi.org/10.48550/arXiv.2305.02452.
  2. N. Papanikolaou and T. Speck, Perturbative Dynamic Renormalization of Scalar Field Theories in Statistical Physics, https://arxiv.org/abs/2303.02222.

Publications in peer-review journals

  1. 2023

    1. 111. A. Jayaram and T. Speck, Effective Dynamics and Fluctuations of a Trapped Probe Moving in a Fluid of Active Hard Discs, EPL 143, 17005 (2023). https://doi.org/10.1209/0295-5075/acdf1a.
    2. 110. S. Lemcke, J. H. Appeldorn, M. Wand, and T. Speck, Towards a Structural Identification of Metastable Molecular Conformations, J. Chem. Phys. 159, 114105 (2023). https://doi.org/10.1063/5.0164145.
    3. 109. J. A. K. L. Picard and T. Speck, Inverse Condensation of Adsorbed Molecules with Two Conformations, J. Chem. Phys. 158, 034701 (2023). https://doi.org/10.1063/5.0133965.
    4. 108. F. Siebers, A. Jayaram, P. Blümler, and T. Speck, Exploiting Compositional Disorder in Collectives of Light-Driven Circle Walkers, Sci. Adv. 9, 15 (2023). https://doi.org/10.1126/sciadv.adf5443.
  2. 2022

    1. 107. W. Janke, L. Höltkemeier, A. Kühnle, and T. Speck, Structure Formation of C60 on Insulating CaF2 Substrates: Matching Experiments with Simulations, Adv. Mater. Interfaces 9, 2201510 (2022). https://doi.org/10.1002/admi.202201510.
    2. 106. S. Chakraborty, C. M. Berac, M. Urschbach, D. Spitzer, M. Mezger, P. Besenius, and T. Speck, Predicting the Supramolecular Assembly of Amphiphilic Peptides from Comprehensive Coarse-Grained Simulations, ACS Appl. Polym. Mater. 4, 822 (2022). https://doi.org/10.1021/acsapm.1c01208.
    3. 105. T. Speck, Critical Behavior of Active Brownian Particles: Connection to Field Theories, Phys. Rev. E 105, 064601 (2022). https://doi.org/10.1103/PhysRevE.105.064601.
    4. 104. T. Speck, Efficiency of Isothermal Active Matter Engines: Strong Driving Beats Weak Driving, Phys. Rev. E 105, L012601 (2022). https://doi.org/10.1103/PhysRevE.105.L012601.
    5. 103. D. Richard, C. P. Royall, and T. Speck, Response to "Comment on “Communication: Is Directed Percolation in Colloid-Polymer Mixtures Linked to Dynamic Arrest?” " J. Chem. Phys. 148, 241101 (2018), J. Chem. Phys. 157, 027102 (2022). https://doi.org/10.1063/5.0090537.
    6. 102. S. Paul, A. Jayaram, N. Narinder, T. Speck, and C. Bechinger, Force Generation in Confined Active Fluids: The Role of Microstructure, Phys. Rev. Lett. 129, 058001 (2022). https://doi.org/10.1103/PhysRevLett.129.058001.
    7. 101. J. Appeldorn, S. Lemcke, T. Speck, and A. Nikoubashman, Employing Artificial Neural Networks to Identify Reaction Coordinates and Pathways for Self-Assembly, J. Phys. Chem. B 126, 5007 (2022). https://doi.org/10.1021/acs.jpcb.2c02232.
  3. 2021

    1. 100. T. Speck, Modeling of Biomolecular Machines in Non-Equilibrium Steady States, J. Chem. Phys. 155, 230901 (2021). https://doi.org/10.1063/5.0070922.
    2. 99. T. Speck, Coexistence of Active Brownian Disks: Van Der Waals Theory and Analytical Results, Phys. Rev. E 103, 012607 (2021). https://doi.org/10.1103/PhysRevE.103.012607.
    3. 98. F. Dittrich, T. Speck, and P. Virnau, Critical Behaviour in Active Lattice Models of Motility-Induced Phase Separation, Eur. J. Phys. E 44, 53 (2021). https://doi.org/10.1140/epje/s10189-021-00058-1.
    4. 97. S. Aeschlimann, L. Lyu, S. Becker, S. Mousavion, T. Speck, H.-J. Elmers, B. Stadtmüller, M. Aeschlimann, R. Bechstein, and A. Kühnle, Mobilization upon Cooling, Angew. Chem. Int. Ed. 60, 19117 (2021). https://doi.org/10.1002/anie.202105100.
    5. 96. B. Deußen, A. Jayaram, F. Kummer, Y. Wang, T. Speck, and M. Oberlack, High-Order Simulation Scheme for Active Particles Driven by Stress Boundary Conditions, J. Phys. Condens. Matter 33, 244004 (2021). https://doi.org/10.1088/1361-648X/abf8cf.
    6. 95. T. Speck and A. Jayaram, Vorticity Determines the Force on Bodies Immersed in Active Suspensions, Phys. Rev. Lett. 126, 138002 (2021). https://doi.org/10.1103/PhysRevLett.126.138002.
    7. 94. T. Speck, Modeling Non-Linear Dielectric Susceptibilities of Supercooled Molecular Liquids, J. Chem. Phys. 155, 014506 (2021). https://doi.org/10.1063/5.0056657.
    8. 93. J. Regel, T. Mashoff, T. Speck, and H. J. Elmers, Tip-Induced Mobilization upon Cooling of Ni Monolayers on Re(0001), Phys. Rev. B 103, 134114 (2021). https://doi.org/10.1103/PhysRevB.103.134114.
    9. 92. W. Janke and T. Speck, Multiscale Modelling of Structure Formation of C60 on Insulating CaF2 Substrates, J. Chem. Phys. 154, 234701 (2021). https://doi.org/10.1063/5.0051188.
    10. 91. M. Gerhard, A. Jayaram, A. Fischer, and T. Speck, Hunting Active Brownian Particles: Learning Optimal Behavior, Phys. Rev. E 104, 054614 (2021). https://doi.org/10.1103/PhysRevE.104.054614.
  4. 2020

    1. 90. T. Speck, Collective Forces in Scalar Active Matter, Soft Matter 16, 2652 (2020). https://doi.org/10.1039/D0SM00176G.
    2. 89. A. Fischer, F. Schmid, and T. Speck, Quorum-Sensing Active Particles with Discontinuous Motility, Phys. Rev. E 101, 012601 (2020). https://doi.org/10.1103/PhysRevE.101.012601.
    3. 88. M. Campo and T. Speck, Dynamical Coexistence in Moderately Polydisperse Hard-Sphere Glasses, J. Chem. Phys. 152, 014501 (2020). https://doi.org/10.1063/1.5134842.
    4. 87. C. P. Royall, F. Turci, and T. Speck, Dynamical Phase Transitions and Their Relation to Structural and Thermodynamic Aspects of Glass Physics, J. Chem. Phys. 153, 090901 (2020). https://doi.org/10.1063/5.0006998.
    5. 86. G. G. et al., The 2020 Motile Active Matter Roadmap, J. Phys.: Condens. Matter 32, 193001 (2020). https://doi.org/10.1088/1361-648X/ab6348.
    6. 85. W. Janke and T. Speck, Modeling Epitaxial Film Growth of C60 Revisited, Phys. Rev. B 101, 125427 (2020). https://doi.org/10.1103/PhysRevB.101.125427.
    7. 84. A. Jayaram, A. Fischer, and T. Speck, From Scalar to Polar Active Matter: Connecting Simulations with Mean-Field Theory, Phys. Rev. E 101, 022602 (2020). https://doi.org/10.1103/PhysRevE.101.022602.
  5. 2019

    1. 83. F. Turci, C. P. Royall, and T. Speck, Devitrification of the Kob-Andersen Glass Former: Competition with the Locally Favored Structure, J. Phys.: Conf. Ser. 1252, 012012 (2019). https://doi.org/10.1088/1742-6596/1252/1/012012.
    2. 82. T. Speck, Dynamic Facilitation Theory: A Statistical Mechanics Approach to Dynamic Arrest, J. Stat. Mech. 084015 (2019). https://doi.org/10.1088/1742-5468/ab2ace.
    3. 81. A. Fischer, A. Chatterjee, and T. Speck, Aggregation and Sedimentation of Active Brownian Particles at Constant Affinity, J. Chem. Phys. 150, 064910 (2019). https://doi.org/10.1063/1.5081115.
    4. 80. S. Chakraborty, C. M. Berac, B. Kemper, P. Besenius, and T. Speck, Modeling Supramolecular Polymerization: The Role of Steric and Hydrophobic Interactions, Macromolecules 52, 7661 (2019). https://doi.org/10.1021/acs.macromol.9b01435.
    5. 79. T. Speck, Thermodynamic Approach to the Self-Diffusiophoresis of Colloidal Janus Particles, Phys. Rev. E 99, 060602(R) (2019). https://doi.org/10.1103/PhysRevE.99.060602.
    6. 78. D. Richard and T. Speck, Classical Nucleation Theory for the Crystallization Kinetics in Sheared Liquids, Phys. Rev. E 99, 062801 (2019). https://doi.org/10.1103/PhysRevE.99.062801.
    7. 77. F. Knoch and T. Speck, Non-Equilibrium Markov State Modeling of Periodically Driven Biomolecules, J. Chem. Phys. 150, 054103 (2019). https://doi.org/10.1063/1.5055818.
    8. 76. M. Campo, S. K. Schnyder, J. J. Molina, T. Speck, and R. Yamamoto, Spontaneous Spatiotemporal Ordering of Shape Oscillations Enhances Cell Migration, Soft Matter 15, 4939 (2019). https://doi.org/10.1039/C9SM00526A.
  6. 2018

    1. 75. D. Richard, J. Hallett, T. Speck, and C. P. Royall, Coupling between Criticality and Gelation in “Sticky” Spheres: A Structural Analysis, Soft Matter 14, 5554 (2018). https://doi.org/10.1039/C8SM00389K.
    2. 74. J. T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, and P. Virnau, Critical Behavior of Active Brownian Particles, Phys. Rev. E 98, 030601(R) (2018). https://doi.org/10.1103/PhysRevE.98.030601.
    3. 73. F. Knoch, K. Schäfer, G. Diezemann, and T. Speck, Dynamic Coarse-Graining Fills the Gap between Atomistic Simulations and Experimental Investigations of Mechanical Unfolding, J. Chem. Phys. 148, 044109 (2018). https://doi.org/10.1063/1.5010435.
    4. 72. F. Knoch and T. Speck, Unfolding Dynamics of Small Peptides Biased by Constant Mechanical Forces, Mol. Syst. Des. Eng. 3, 204 (2018). https://doi.org/10.1039/C7ME00080D.
    5. 71. D. Richard, C. P. Royall, and T. Speck, Communication: Is Directed Percolation in Colloid-Polymer Mixtures Linked to Dynamic Arrest?, J. Chem. Phys. 148, 241101 (2018). https://doi.org/10.1063/1.5037680.
    6. 70. R. Niu, A. Fischer, T. Palberg, and T. Speck, Dynamics of Binary Active Clusters Driven by Ion-Exchange Particles, ACS Nano 12, 10932 (2018). https://doi.org/10.1021/acsnano.8b04221.
    7. 69. F. Turci, T. Speck, and C. P. Royall, Structural-Dynamical Transition in the Wahnström Mixture, Eur. Phys. J. E 41, 54 (2018). https://doi.org/10.1140/epje/i2018-11662-3.
    8. 68. M. Langbecker, R. Wirtz, F. Knoch, M. Noaman, T. Speck, and P. Windpassinger, Highly Controlled Optical Transport of Cold Atoms into a Hollow-Core Fiber, New J. Phys. 20, 083038 (2018). https://doi.org/10.1088/1367-2630/aad9bb.
    9. 67. A. Härtel, D. Richard, and T. Speck, Three-Body Correlations and Conditional Forces in Suspensions of Active Hard Disks, Phys. Rev. E 97, 012606 (2018). https://doi.org/10.1103/PhysRevE.97.012606.
    10. 66. T. Bäuerle, A. Fischer, T. Speck, and C. Bechinger, Self-Organization of Active Particles by Quorum Sensing Rules, Nat. Commun. 9, 3232 (2018). https://doi.org/10.1038/s41467-018-05675-7.
    11. 65. T. Speck, Active Brownian Particles Driven by Constant Affinity, EPL 123, 20007 (2018). https://doi.org/10.1209/0295-5075/123/20007.
    12. 64. D. Richard and T. Speck, Crystallization of Hard Spheres Revisited. I. Extracting Kinetics and Free Energy Landscape from Forward Flux Sampling, J. Chem. Phys. 148, 124110 (2018). https://doi.org/10.1063/1.5016277.
    13. 63. D. Richard and T. Speck, Crystallization of Hard Spheres Revisited. II. Thermodynamic Modeling, Nucleation Work, and the Surface of Tension, J. Chem. Phys. 148, 224102 (2018). https://doi.org/10.1063/1.5025394.
  7. 2017

    1. 62. R. Wulfert, M. Oechsle, T. Speck, and U. Seifert, Driven Brownian Particle as a Paradigm for a Nonequilibrium Heat Bath: Effective Temperature and Cyclic Work Extraction, Phys. Rev. E 95, 050103 (2017). https://doi.org/10.1103/PhysRevE.95.050103.
    2. 61. T. Palmer and T. Speck, Thermodynamic Formalism for Transport Coefficients with an Application to the Shear Modulus and Shear Viscosity, J. Chem. Phys. 146, 124130 (2017). https://doi.org/10.1063/1.4979124.
    3. 60. R. Pinchaipat, M. Campo, F. Turci, J. Hallett, T. Speck, and C. P. Royall, Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space, Phys. Rev. Lett. 119, 028004 (2017). https://doi.org/10.1103/PhysRevLett.119.028004.
    4. 59. R. Wulfert, U. Seifert, and T. Speck, Nonequilibrium Depletion Interactions in Active Microrheology, Soft Matter 13, 9093 (2017). https://doi.org/10.1039/C7SM01737E.
    5. 58. R. Niu, T. Palberg, and T. Speck, !!Self-Assembly of Colloidal Molecules Due to Self-Generated Flow, Phys. Rev. Lett. 119, 028001 (2017). https://doi.org/10.1103/PhysRevLett.119.028001.
    6. 57. F. Turci, C. P. Royall, and T. Speck, Non-Equilibrium Phase Transition in an Atomistic Glassformer: The Connection to Thermodynamics, Phys. Rev. X 7, 031028 (2017). https://doi.org/10.1103/PhysRevX.7.031028.
    7. 56. F. Knoch and T. Speck, Nonequilibrium Markov State Modeling of the Globule-Stretch Transition, Phys. Rev. E 95, 012503 (2017). https://doi.org/10.1103/PhysRevE.95.012503.
    8. 55. J. T. Siebert, J. Letz, T. Speck, and P. Virnau, Phase Behavior of Active Brownian Disks, Spheres, and Dimers, Soft Matter 13, 1020 (2017). https://doi.org/10.1039/C6SM02622B.
    9. 54. B. Trefz, J. T. Siebert, T. Speck, K. Binder, and P. Virnau, Estimation of the Critical Behavior in an Active Colloidal System with Vicsek-like Interactions, J. Chem. Phys. 146, 074901 (2017). https://doi.org/10.1063/1.4975812.
  8. 2016

    1. 53. T. Speck, Collective Behavior of Active Brownian Particles: From Microscopic Clustering to Macroscopic Phase Separation, Eur. Phys. J. Special Topics 225, 2287 (2016). https://doi.org/10.1140/epjst/e2016-60022-8.
    2. 52. R. Wulfert, U. Seifert, and T. Speck, Discontinuous Thinning in Active Microrheology of Soft Complex Matter, Phys. Rev. E 94, 062610 (2016). https://doi.org/10.1103/PhysRevE.94.062610.
    3. 51. M. Rein, N. Heinß, F. Schmid, and T. Speck, Collective Behavior of Quorum-Sensing Run-and-Tumble Particles under Confinement, Phys. Rev. Lett. 116, 058102 (2016). https://doi.org/10.1103/PhysRevLett.116.058102.
    4. 50. M. Campo and T. Speck, Polydisperse Hard Spheres: Crystallization Kinetics in Small Systems and Role of Local Structure, J. Stat. Mech. 084007 (2016). https://doi.org/10.1088/1742-5468/2016/8/084007.
    5. 49. T. Speck and R. L. Jack, Ideal Bulk Pressure of Active Brownian Particles, Phys. Rev. E 93, 062605 (2016). https://doi.org/10.1103/PhysRevE.93.062605.
    6. 48. D. Richard, H. Löwen, and T. Speck, Nucleation Pathway and Kinetics of Phase-Separating Active Brownian Particles, Soft Matter 12, 5257 (2016). https://doi.org/10.1039/C6SM00485G.
    7. 47. M. Rein and T. Speck, Applicability of Effective Pair Potentials for Active Brownian Particles, Eur. Phys. J. E 39, 84 (2016). https://doi.org/10.1140/epje/i2016-16084-7.
    8. 46. I. Williams, E. C. Oğuz, T. Speck, P. Bartlett, H. Löwen, and C. P. Royall, Transmission of Torque at the Nanoscale, Nature Phys. 12, 98 (2016). https://doi.org/10.1038/nphys3490.
    9. 45. T. Speck, Stochastic Thermodynamics for Active Matter, EPL 114, 30006 (2016). https://doi.org/10.1209/0295-5075/114/30006.
    10. 44. V. Wulf, F. Knoch, T. Speck, and C. Sönnichsen, Gold Nanorods as Plasmonic Sensors for Particle Diffusion, J. Phys. Chem. Lett. 7, 4951 (2016). https://doi.org/10.1021/acs.jpclett.6b02165.
    11. 43. T. Speck, Thermodynamic Formalism and Linear Response Theory for Nonequilibrium Steady States, Phys. Rev. E 94, 022131 (2016). https://doi.org/10.1103/PhysRevE.94.022131.
    12. 42. P. Kordt, T. Speck, and D. Andrienko, Finite-Size Scaling of Charge Carrier Mobility in Disordered Organic Semiconductors, Phys. Rev. B 94, 014208 (2016). https://doi.org/10.1103/PhysRevB.94.014208.
  9. 2015

    1. 41. F. Knoch and T. Speck, Cycle Representatives for the Coarse-Graining of Systems Driven into a Non-Equilibrium Steady State, New J. Phys. 17, 115004 (2015). https://doi.org/10.1088/1367-2630/17/11/115004.
    2. 40. J. Bialké, J. T. Siebert, H. Löwen, and T. Speck, Negative Interfacial Tension in Phase-Separated Active Brownian Particles, Phys. Rev. Lett. 115, 098301 (2015). https://doi.org/10.1103/PhysRevLett.115.098301.
    3. 39. T. Speck, A. M. Menzel, J. Bialké, and H. Löwen, !!Dynamical Mean-Field Theory and Weakly Non-Linear Analysis for the Phase Separation of Active Brownian Particles, J. Chem. Phys. 142, 224109 (2015). https://doi.org/10.1063/1.4922324.
    4. 38. D. Richard and T. Speck, The Role of Shear in Crystallization Kinetics: From Suppression to Enhancement, Sci. Rep. 5, 14610 (2015). https://doi.org/10.1038/srep14610.
    5. 37. J. Bialké, T. Speck, and H. Löwen, Active Colloidal Suspensions: Clustering and Phase Behavior, J. Non-Cryst. Solids 407, 367 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.08.011.
  10. 2014

    1. 36. T. Speck, J. Bialké, A. M. Menzel, and H. Löwen, Effective Cahn-Hilliard Equation for the Phase Separation of Active Brownian Particles, Phys. Rev. Lett. 112, 218304 (2014). https://doi.org/10.1103/PhysRevLett.112.218304.
    2. 35. R. M. Turner, T. Speck, and J. P. Garrahan, Meta-Work and the Analogous Jarzynski Relation in Ensembles of Dynamical Trajectories, J. Stat. Mech. P09017 (2014). https://doi.org/10.1088/1742-5468/2014/09/P09017.
  11. 2013

    1. 34. R. L. C. Vink and T. Speck, Application of Classical Nucleation Theory to the Formation of Adhesion Domains, Soft Matter 9, 11197 (2013). https://doi.org/10.1039/C3SM52116H.
    2. 33. I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, and T. Speck, +Dynamical Clustering and Phase Separation in Suspensions of Self-Propelled Colloidal Particles, Phys. Rev. Lett. 110, 238301 (2013). https://doi.org/10.1103/PhysRevLett.110.238301.
    3. 32. J. Bialké, H. Löwen, and T. Speck, Microscopic Theory for the Phase Separation of Self-Propelled Repulsive Disks, EPL 103, 30008 (2013). https://doi.org/10.1209/0295-5075/103/30008.
    4. 31. T. Speck, Gaussian Field Theory for the Brownian Motion of a Solvated Particle, Phys. Rev. E 88, 014103 (2013). https://doi.org/10.1103/PhysRevE.88.014103.
    5. 30. B. Lander, U. Seifert, and T. Speck, !!Crystallization in a Sheared Colloidal Suspension, J. Chem. Phys. 138, 224907 (2013). https://doi.org/10.1063/1.4808354.
    6. 29. T. Leonard, B. Lander, U. Seifert, and T. Speck, Stochastic Thermodynamics of Fluctuating Density Fields: Non-Equilibrium Free Energy Differences under Coarse-Graining, J. Chem. Phys. 139, 204109 (2013). https://doi.org/10.1063/1.4833136.
  12. 2012

    1. 28. T. Speck, A. Malins, and C. P. Royall, First-Order Phase Transition in a Model Glass Former: Coupling of Local Structure and Dynamics, Phys. Rev. Lett. 109, 195703 (2012). https://doi.org/10.1103/PhysRevLett.109.195703.
    2. 27. T. Speck, A. Engel, and U. Seifert, The Large Deviation Function for Entropy Production: The Optimal Trajectory and the Role of Fluctuations, J. Stat. Mech. P12001 (2012). https://doi.org/10.1088/1742-5468/2012/12/P12001.
    3. 26. T. Speck and D. Chandler, Constrained Dynamics of Localized Excitations Causes a Non-Equilibrium Phase Transition in an Atomistic Model of Glass Formers, J. Chem. Phys. 136, 184509 (2012). https://doi.org/10.1063/1.4712026.
    4. 25. J. Bialké, T. Speck, and H. Löwen, +Crystallization in a Dense Suspension of Self-Propelled Particles, Phys. Rev. Lett. 108, 168301 (2012). https://doi.org/10.1103/PhysRevLett.108.168301.
    5. 24. T. Speck and R. L. C. Vink, Random Pinning Limits the Size of Membrane Adhesion Domains, Phys. Rev. E 86, 031923 (2012). https://doi.org/10.1103/PhysRevE.86.031923.
    6. 23. B. Lander, U. Seifert, and T. Speck, Effective Confinement as Origin of the Equivalence of Kinetic Temperature and Fluctuation-Dissipation Ratio in a Dense Shear-Driven Suspension, Phys. Rev. E 85, 021103 (2012). https://doi.org/10.1103/PhysRevE.85.021103.
  13. 2011

    1. 22. T. Speck and J. P. Garrahan, Space-Time Phase Transitions in Driven Kinetically Constrained Lattice Models, Eur. Phys. J. B 79, 1 (2011). https://doi.org/10.1140/epjb/e2010-10800-x.
    2. 21. T. Speck, Effective Free Energy for Pinned Membranes, Phys. Rev. E 83, 050901(R) (2011). https://doi.org/10.1103/PhysRevE.83.050901.
    3. 20. T. Speck, Work Distribution for the Driven Harmonic Oscillator with Time-Dependent Strength: Exact Solution and Slow Driving, J. Phys. A: Math. Gen. 44, 305001 (2011). https://doi.org/10.1088/1751-8113/44/30/305001.
  14. 2010

    1. 19. B. Lander, U. Seifert, and T. Speck, Mobility and Diffusion of a Tagged Particle in a Driven Colloidal Suspension, EPL 92, 58001 (2010). https://doi.org/10.1209/0295-5075/92/58001.
    2. 18. T. Speck, Driven Soft Matter: Entropy Production and the Fluctuation-Dissipation Theorem, Prog. Theor. Phys. Suppl. 184, 248 (2010). https://doi.org/10.1143/PTPS.184.248.
    3. 17. T. Speck, E. Reister, and U. Seifert, Specific Adhesion of Membranes: Mapping to an Effective Bond Lattice Gas, Phys. Rev. E 82, 021923 (2010). https://doi.org/10.1103/PhysRevE.82.021923.
    4. 16. U. Seifert and T. Speck, Fluctuation-Dissipation Theorem in Nonequilibrium Steady States, EPL 89, 10007 (2010). https://doi.org/10.1209/0295-5075/89/10007.
  15. 2009

    1. 15. T. Speck and U. Seifert, Extended Fluctuation-Dissipation Theorem for Soft Matter in Stationary Flow, Phys. Rev. E 79, 040102(R) (2009). https://doi.org/10.1103/PhysRevE.79.040102.
  16. 2008

    1. 14. J. Mehl, T. Speck, and U. Seifert, Large Deviation Function for Entropy Production in Driven One-Dimensional Systems, Phys. Rev. E 78, 011123 (2008). https://doi.org/10.1103/PhysRevE.78.011123.
    2. 13. T. Speck, J. Mehl, and U. Seifert, Role of External Flow and Frame Invariance in Stochastic Thermodynamics, Phys. Rev. Lett. 100, 178302 (2008). https://doi.org/10.1103/PhysRevLett.100.178302.
  17. 2007

    1. 12. T. Speck, V. Blickle, C. Bechinger, and U. Seifert, Distribution of Entropy Production for a Colloidal Particle in a Nonequilibrium Steady State, Europhys. Lett. 79, 30002 (2007). https://doi.org/10.1209/0295-5075/79/30002.
    2. 11. V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, Einstein Relation Generalized to Nonequilibrium, Phys. Rev. Lett. 98, 210601 (2007). https://doi.org/10.1103/PhysRevLett.98.210601.
    3. 10. V. Blickle, T. Speck, U. Seifert, and C. Bechinger, Characterizing Potentials by a Generalized Boltzmann Factor, Phys. Rev. E 75, 060101(R) (2007). https://doi.org/10.1103/PhysRevE.75.060101.
    4. 9. T. Schmiedl, T. Speck, and U. Seifert, Entropy Production for Mechanically or Chemically Driven Biomolecules, J. Stat. Phys. 128, 77 (2007). https://doi.org/10.1007/s10955-006-9148-1.
    5. 8. T. Speck and U. Seifert, The Jarzynski Relation, Fluctuation Theorems, and Stochastic Thermodynamics for Non-Markovian Processes, J. Stat. Mech. L09002 (2007). https://doi.org/10.1088/1742-5468/2007/09/L09002.
  18. 2006

    1. 7. T. Speck and U. Seifert, +Restoring a Fluctuation-Dissipation Theorem in a Nonequilibrium Steady State, Europhys. Lett. 74, 391 (2006). https://doi.org/10.1209/epl/i2005-10549-4.
    2. 6. V. Blickle, T. Speck, L. Helden, U. Seifert, and C. Bechinger, +Thermodynamics of a Colloidal Particle in a Time-Dependent Nonharmonic Potential, Phys. Rev. Lett. 96, 070603 (2006). https://doi.org/10.1103/PhysRevLett.96.070603.
    3. 5. C. Tietz, S. Schuler, T. Speck, U. Seifert, and J. Wrachtrup, Measurement of Stochastic Entropy Production, Phys. Rev. Lett. 97, 050602 (2006). https://doi.org/10.1103/PhysRevLett.97.050602.
  19. 2005

    1. 4. S. Schuler, T. Speck, C. Tietz, J. Wrachtrup, and U. Seifert, Experimental Test of the Fluctuation Theorem for a Driven Two-Level System with Time-Dependent Rates, Phys. Rev. Lett. 94, 180602 (2005). https://doi.org/10.1103/PhysRevLett.94.180602.
    2. 3. T. Speck and U. Seifert, Dissipated Work in Driven Harmonic Diffusive Systems: General Solution and Application to Stretching Rouse Polymers, Eur. Phys. J. B 43, 543 (2005). https://doi.org/10.1140/epjb/e2005-00086-6.
    3. 2. T. Speck and U. Seifert, Integral Fluctuation Theorem for the Housekeeping Heat, J. Phys. A: Math. Gen. 38, L581 (2005). https://doi.org/10.1088/0305-4470/38/34/L03.
  20. 2004

    1. 1. T. Speck and U. Seifert, Distribution of Work in Isothermal Nonequilibrium Processes, Phys. Rev. E 70, 066112 (2004). https://doi.org/10.1103/PhysRevE.70.066112.
To the top of the page